The number of positive integral solutions $\left| {\,\,\begin{array}{*{20}{c}}{1 - \lambda }&2&1\\{ - 3}&\lambda &{ - 2}\\2&{ - 2}&{1 + \lambda }\end{array}\,\,} \right|$ $= 0$ is
$0$
$2$
$3$
$1$
If $\left| {\,\begin{array}{*{20}{c}}{x + 1}&1&1\\2&{x + 2}&2\\3&3&{x + 3}\end{array}\,} \right| = 0,$ then $x$ is
The value of the determinant$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 - x}&1\\1&1&{1 + y}\end{array}\,} \right|$is
The number of distinct real roots of $\left| {\,\begin{array}{*{20}{c}}{\sin x}&{\cos x}&{\cos x}\\{\cos x}&{\sin x}&{\cos x}\\{\cos x}&{\cos x}&{\sin x}\end{array}\,} \right| = 0$ in the interval $ - \frac{\pi }{4} \le x \le \frac{\pi }{4}$ is
The sum of distinct values of $\lambda$ for which the system of equations
$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$
$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$
$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$
has non-zero solutions, is